
Transport Layer

Dr. Xiqun Lu

College of Computer Science

Zhejiang University

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

The Transport Layer

• Together with the network layer, the transport layer is the

heart of the protocol hierarchy.

– The transport layer provides efficient, reliable, cost-effective data

transport from the source machine to the destination machine.

– The transport layer provides end-to-end connectivity across the

network.

end-to-end

chained

The Relationship of the Network, Transport,

and Application Layers

The Transport Service
• Two types of transport service

– Connection-oriented transport service.

• Connections has three phases: establishment, data transfer, and release

– Connectionless transport service

• The transport layer service is so similar to the network layer service,
why are there two distinct layers?

– The transport code runs entirely on the users’ machines, but the network layer
mostly runs on the routers. The users have no real control over the network layer.

– The network service is generally unreliable.

– The only possibility is to put on top of the network layer another layer that
improves the quality of the service.

• In a connectionless network, if packets are lost or mangled, the transport entity can detect
the problem and compensate for it by using retransmissions.

• In a connection-oriented network, if a transport entity is informed halfway through a
long transmission that its network connection has been abruptly terminated, with no
indication of what has happened to the data currently in transit, it can set up a new
network connection to the remote transport entity. Using this new network connection, it
can send a query to its peer asking which data arrived and which did not, and knowing
where it was, pick up from there it left off.

Transit Units of Different Layers

• Transport layer: segment or TPDU (Transport Protocol Data Unit)

• Network layer: packet

• Data link layer: frame

• Physical layer: bit

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

The Internet Transport Protocols

• The Internet has two main protocols in the transport layer

– UDP (User Datagram Protocol, connectionless protocol): It does

nothing beyond sending packets between applications. It typically

runs in the operating system.

– TCP (connection-oriented protocol): It does almost everything. It

makes connections and adds reliability with retransmission, along

with flow control and congestion control.

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

• RTP (Real-Time Transport Protocol) & RTCP (Real-time Transport Control

Protocol)

– TCP

UDP

• UDP: connectionless transport protocol

– RFC768

– UDP header (8 bytes)

• The two ports serve to identify the endpoints within the source

and destination machines.

– With these two ports, it delivers the embedded segment to the correct

application.

– The source port is primarily needed when a reply must be sent back to the

source. By copying the Source Port field from the incoming segment into the

Destination Port field of the outgoing segment.

UDP (II)

• UDP header (8 bytes)

– The UDP length field includes the 8-byte header and the data.

• The minimum length is 8 bytes, to cover the header.

• The maximum length is 65,515 bytes, which is lower than the largest

number that will fit in 16 bits because of the size limit on IP packets.

– The UDP checksum field (optional) is to provide extra reliability.

• It checksums the header, data, and a conceptual IP pseudoheader.

UDP (III)

• Performing the checksum computation

– The Checksum field is set to zero.

– The data field is padded out with an additional zero byte if its

length is an odd number of bytes.

– The checksum algorithm is simply to add up all the 16-bit words

(note here a word = 16 bits = 2 bytes) in one’s complement and to

take the one’s complement of the sum.

UDP (IV)

• The IPv4 pseudoheader

– The 32 bit IPv4 addresses of the source and destination machines.

• Including the pseudoheader in the UDP checksum computation helps detect

mis-delivered packets, but including it also violates the protocol hierarchy

since the IP addresses in it belong to the IP layer, not to the UDP layer.

– The protocol number of UDP (17)

– The byte count of the UDP segment (including the header).

An UDP Example

The SSDP protocol (Application) can

discover Plug & Play devices. SSDP uses

unicast and multicast address

(239.255.255.250). SSDP uses UDP

Protocol on port 1900.

UDP in IPv4 Packet

UDP (V)

• What UDP does not do

– Flow control, congestion control, or retransmission upon receipt of
a bad segment.

• What UDP does do

– To provide an interface to the IP protocol with the added feature of
de-multiplexing multiple processes using the ports.

– Optional end-to-end error detection (~ checksum)

• Which application uses the UDP protocol

– DNS (Domain Name System, Chapter 7)

– SSDP (Simple Service Discovery Protocol)

• The SSDP protocol can discover Plug & Play devices.

• SSDP is HTTP like protocol and work with NOTIFY and M-SEARCH
methods.

Real-Time Transport Protocol (I)

• RTP (Real-time Transport Protocol)

– RFC3550

– It is a transport protocol but just happens to be implemented in the application

layer.

• Two aspects of real-time transport

– The RTP protocol for transporting audio and video data in packets

– How the receiver plays out the audio and video at the right time?

RTP (II)

• The basic function of RTP is to multiplex several real-time data streams
onto a single stream of UDP packets. The UDP stream can be sent to a single
destination (unicasting) or to multiple destination (multicasting).

• Since there is no guarantees about delivery, and packets may be lost, delayed,
corrupted, etc. Each packet sent in an RTP stream is given a number one
higher than its predecessor.

– This numbering allows the destination to determine if any packets are missing.

– If a packet is missing, either skip (a video frame) or interpolation (audio data).

– RTP has no acknowledgements.

• Each RTP payload may contain multiple samples, and they may be coded
any way that the application wants.

– RTP provides a header field to specify the encoding scheme.

• To associate a time-stamping with the first sample in each packet. This
mechanism allows the destination to do a small amount of buffering and
play each sample the right number of millisecond after the start of the stream.

– To reduce the effect of variation in network delay

– To synchronize multiple streams.

The RTP Header (I)

It consists of three 32- bit words and potentially some extensions.

The RTP Header (II)

• 1) The Version field: 2

• 2) The P bit indicates that the packet has been padded to a multiple of 4
bytes. The last padding byte tells how many bytes were added.

• 3) The X bit indicates that an extension header is present.

• 4) The CC field tells how many contributing sources are present, from 0 to
15.

• 5) The M bit field is an application-specific marker bit.

• 6) The Payload type field tells which encoding algorithm has been used.

• 7) The Sequence number is just a counter that is incremented on each RTP
packet sent. It is used to detect lost packets.

• 8) The Timestamp is produced by the stream’s source to note when the 1st

sample in the packet was made.

• 9) The Synchronization source identifier tells which stream the packet
belongs to.

• 10) The Contributing source identifier, if any, are used when mixers are
present in the studio.

RTCP

• The RTCP (Real-time Transport Control Protocol) is a little

sister protocol of RTP.

– RFC3550

– To handle feedback, synchronization, and the user interface.

– It does not transport any media samples.

Playout with Buffering and Jitter

Control

Jitter

 A key consideration for smooth playout is the playback point, or how long to wait

at the receiver for media before playing it out. Deciding how long to wait depends

on the jitter.

 To pick a good playback point, the application can measure the jitter by looking at

the difference between the RTP timestamps and the arrival time, and can adapt the

playback point according to the change of delay over time.

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

• TCP segment header

• TCP connection establish

• TCP sliding window

• TCP timer management

• TCP congestion control

• BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP
• TCP (Transmission Control Protocol) was designed to

provide a reliable end-to-end byte stream over an unreliable
internetwork.

• An internetwork may have wildly different topologies,
bandwidths, delays, packet sizes, and other parameters in
different parts.

• TCP was designed to dynamically adapt to properties of the
internetwork and to be robust in the face of many kinds of
failures.
– RFC793, RFC793+, RFC1122 (clarifications and bug fixes),

RFC1323 (extensions for high-performance), RFC2018 (selective
acknowledgement), RFC 2581 (congestion control), RFC2873
(repurposing of header fields for quality of service), RFC2988
(improved retransmission timers), RFC 3168 (explicit congestion
control)

The TCP Service Model

• TCP service is obtained by both the sender and the receiver

creating end points, called sockets.

• Each socket has a socket number (address) consisting of

the IP addressing of the host and a 16-bit number local to

that host, called a port.

• Connections are identified by the socket identifiers at both

ends, that is, (socket1, socket2).

• All TCP connections are full duplex and point-to-point.

• TCP does not support multicasting and broadcasting.

The TCP Service Model (II)

• A TCP connection is a byte stream, not a message stream.

Message boundaries are not preserved end to end.

– For example, if the sending process does four 512-byte writes to a

TCP stream, these data may be delivered to the receiving process

as four 512-byte chunks, two 1024-byte chunks, one 2048-byte

chunk.

The TCP Service Model (III)

• When an application passes data to TCP, TCP may send it
immediately or buffer it.

– TCP may send data immediately (with the PUSH flag)

• When an application has high priority data that should be
processed immediately, the sending application can put some
control information in the data stream and give it to TCP along
with the URGENT flag.

• When the urgent data are received at the destination, the
receiving application is interrupted so it can stop whatever it was
doing and read the data stream to find the urgent data.

• The end of the urgent data is marked so the application knows
when it is over. The start of the urgent data is not marked. It is up
to the application to figure that out.

Some Assigned Ports for Well-known

Applications

• The list of well-known ports is given at www.iana.org.

TCP

• The TCP Protocol

– The form of data exchange: segment

– Include: a fixed 20-byte header + <optional> + <0-N data bytes>

– Two limits restrict the segment size:

• Each segment, including the TCP header, must fit in the 65515-byte

IP payload (65535 20).

• Each link has an MTU (Maximum Transfer Unit)

TCP

• The TCP Protocol

– The basic TCP protocol: the sliding window protocol with

dynamic window size

• Although this protocol sounds simple, there are many problems to

solve.

• 1) Segment can arrive out of order, so bytes 3072-4095 can arrive but

cannot be acknowledged because bytes 2048-3071 have not turned up

yet.

• 2) Segments can also be delayed so long in transit that the sender

times out and retransmits them. The retransmissions may include

different byte ranges than the original transmission, requiring careful

administration to keep track of which bytes have been correctly

received so far.

• …

The TCP Segment Header

• A key feature of TCP, and one that dominants the protocol

design, is that every byte on a TCP connection has its own

32-bit sequence number.

• Every segment begins with a fixed-format, 20-byte header.

• The fixed header may be followed by header options..

• After the options, if any, up to 65535 20 (the IP header)

20 (the TCP header) = 65495 data bytes may follow.

• Segments without any data are legal and are commonly used

for acknowledgements and control messages.

The TCP Segment Header

The TCP Segment Header (I)

• 1) The Source port (16 bits) and Destination port (16 bits)

fields identify the local end points of the connection

– A TCP port (16 bits) plus its host’s IP address (32 bits) forms a 48-

bit unique end point.

– The connection identifier is a 5 tuple because it consists of five

pieces of information: the protocol (TCP), source IP, and source

port, and destination IP and destination port.

• 2) The Sequence number (32 bits) and Acknowledgement

number (32 bits) fields

– The Acknowledgement number specifies the next in-order byte

expected, not the last byte correctly received.

– It is a cumulative acknowledgement because it summarizes the

received data with a single number.

The TCP Segment Header (II)

• 3) The TCP header length (4 bits): tells how many 32-bit

words are contained in the TCP header.

– This information is needed because the Options field is of variable

length, so the header is, too.

– Technically, this field really indicates the start of the data within

the segment, measured in 32-bit words.

• 4) The not used 4-bit field

The TCP Segment Header (III)

• 5) eight 1-bit fields

– CWR and ECE are used to signal congestion when ECN (Explicit

Congestion Notification) is used. [RFC 3168]

• ECE is set to signal an ECN-Echo to a TCP sender to tell it to slow down

when the TCP receiver gets a congestion indication from the network.

• CWR is set to signal Congestion Window Reduced from the TCP sender to

the TCP receiver so that it knows the sender has slowed down and can stop

sending the ECN-Echo.

– URG is set to 1 if the Urgent pointer is in use. The Urgent pointer

is used to indicate a byte offset from the current sequence number

at which urgent data are to be found.

– The ACK bit is set to 1 to indicate that the Acknowledgement

number is valid. If ACK is 0, the segment does not contain an

acknowledgement, so the Acknowledgement number field is

ignored.

The TCP Segment Header (IV)

• 5) eight 1-bit fields

– The PSH bit indicates PUSHed data. The receiver is hereby kindly

requested to deliver the data to the application upon arrival and not

buffer it until a full buffer.

– The RST bit is used to abruptly reset a connection that has become

confused due to a host crash or some other reason. It is also used to

reject an invalid segment or refuse an attempt to open a connection.

– The SYN bit is used to establish connections.

• The connection request has SYN = 1 and ACK= 0.

• SYN = 1 and ACK = 1: the connection reply does bear an

acknowledgement.

• In essence, the SYN bit is used to denote both CONNECTION

REQUEST and CONNECTION ACCEPTED, with the ACK bit used

to distinguish between those two possibilities.

The TCP Segment Header (V)

• 5) eight 1-bit fields

– The FIN bit is used to release a connection. It specifies that the
sender has no more data to transmit. However, after closing a
connection, the closing process may continue to receive data
indefinitely. Both SYN and FIN segments have sequence numbers
and are thus guaranteed to be processed in the corrected order.

• 6) The Window size field (16 bits) tells how many bytes
may be sent starting at the byte acknowledged.

– A window size field of 0 is legal and says that the bytes up to and
including Acknowledgement number 1 have been received, but
that the receiver has not had a chance to consume the data and
would like no more data for the moment.

– In TCP, acknowledgement and permission to send additional data
are completely decoupled.

The TCP Segment Header (VI)

• 7) Checksum (16 bits) provides extra reliability. It

checksum the header, the data and a conceptual pseudo-

header in exactly the same way as UDP, except that the

pseudo-header has the protocol number for TCP (6) and the

checksum is mandatory.

The pseudoheader of TCP

The TCP Segment Header (VII)

• 8) The Options field: the options are of variable length, fill a multiple
of 32 bits by using padding with zeros, and may extended to 40 bytes
to accommodate the longest TCP header that can be specified.

– A widely used option is the one that allows each host to specify the MSS
(Maximum Segment Size) it is willing to accept.

• If a host does not use this option, it defaults to a 536-byte load. All Internet hosts are
required to accept TCP segments of 536+20 = 556 bytes.

– The window scale option allows the sender and receiver to negotiate a window
scale factor at the start of a connection.

• This option is especially useful for lines with high bandwidth, high delay, or both. Large
window size would allow the sender to keep pumping data out.

– The timestamp option carries a timestamp sent by the sender and echoed by the
receiver.

• It is used to compute round-trip time samples that are used to estimate when a packet has
been lost.

• It is also used as a logical extension of the 32-bit sequence number.

– The SACK (Selective ACKnowledgement) option

• It supplements the Acknowledgement number and is used after a packet has been lost but
subsequent (or duplicate) data has arrived.

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

• TCP segment header

• TCP connection establish

• TCP sliding window

• TCP timer management

• TCP congestion control

• BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP Connection Establishment: Three Way Handshake

• Connections are established in TCP by means of the three-way

handshake.

1) Note that a SYN segment

consumes 1 byte of sequence

space so that it can be

acknowledged unambiguously.

2) The initial sequence number

chosen by each host should

cycle slowly. This rule is to

protect against delayed

duplicated packets.

TCP Connection Establishment (I)

• Step 1: SYN for establishing a connection
– Client sends a request segment to the server

– Request segment consists only of TCP Header with an empty payload.
• Maybe?

– Then, it waits for a reply segment from the server.

• Request segment contains the following information in TCP
header:
– 1. Initial sequence number (randomly chosen by the client)

– 2. SYN bit set to 1. (to indicate the server that this segment contains the
initial sequence number used by the client)

– 3. Maximum segment size (the largest data chunk that client can send
and receiver from the server, contained in the Options field)

– 4. Receiving window size (the limit of unacknowledged data that can be
sent to the client, contained in the window size field)

TCP Connection Establishment (II)

• Step 2: SYN + ACK After receiving the request segment
– Server responds to the client by sending the reply segment.

– It informs the client of the parameters at the server side.

• Reply segment contains the following information in TCP header:
– 1. Initial sequence number (randomly chosen by the server)

– 2. SYN bit set to 1. (to indicate the client that this segment contains the initial
sequence number used by the server)

– 3. Maximum segment size (the largest data chunk that server can send and receive
from the client, contained in the Options field)

– 4. Receiving window size (the limit of unacknowledged data that can be sent to the
server, contained in the window size field)

– 5. Acknowledgement number (the initial sequence number in the request segment
sent by the client incremented by 1 as an acknowledgement number, or it indicates
the sequence number of the next data byte that server expects to receive from the
client)

– 6. ACK bit set to 1. (to indicate the client that the acknowledgment number field in
the current segment is valid)

TCP Connection Establishment (III)

• Step 3: ACK After receiving the reply segment

– Client acknowledges the response of server.

– It acknowledges the server by sending a pure acknowledgement.

• Not necessary.

TCP Connection Establishment: Important Points (I)

• Connection establishment phase consume 1 sequence number of
both sides.

– Request segment consumes 1 sequence number of the requester.

– Reply segment consumes 1 sequence number of the responder.

– Pure acknowledgement do not consume any sequence number.

• Pure acknowledgement for the reply segment is not necessary.
This is because

– If client sends the data packet immediately, then it will be considered as
an acknowledgement.

– It means that in the first two steps only, the full duplex connection is
established.

TCP Connection Establishment: Important Points (II)

• For all the segments except the request segment, ACK bit is
always set to 1. This is because
– For the request segment, acknowledgement number field will always be

invalid.

– For all other segments, acknowledgement number field will always be
valid.

• Certain parameters are negotiated during connection
establishment. The negotiation can be on setting the values of
the following parameters
– 1. Window size

– 2. Maximum segment size

– 3. Timer values

TCP Connection Establishment: Important Points (III)

• In any TCP segment,

– If SYN bit = 1 and ACK bit = 0, then it must be the request

segment.

– If SYN bit = 1 and ACK bit = 1, then it must be the reply segment.

– If SYN bit = 0 and ACK bit = 1, then it can be the pure ACK or

segment meant for data transfer.

– If SYN bit = 0 and ACK bit = 0, then this combination is not

possible.

The IPv4 Datagram

• The header has a 20-byte fixed part and a variable-length optional part.

• The bits are transmitted from left to right and top to bottom. This is

“big-endian” network byte order.

The TCP Segment Header

A TCP-SYN Example

连接发起端选了个Seq no. 为：2287064463，这个segment中头部字节为32个，不是TCP头部固定的20

个字节，说明有Option选项，共占12个字节。

A TCP-SYN-ACK Example

注意到没：这里ACK no (2287064464) 刚好前面SYN segment中Sequence no + 1. 接收端选
择的Seq no. 为3433525230，和发送端的Seq no.没有任何关系！

“SYN Flood” Attack

• A vulnerability with implementing the three-way handshake is that the
listening process must remember its sequence number as soon it responds
with its own SYN segment.
– The clock-based ISN proved to have a significant weakness:

– A SYN flood A malicious sender can tie up resources on a host by sending a
stream of SYN segments and never following through to complete the connection. It
crippled many Web servers in the 1990s.

– One way to defend against this attack is to use SYN cookies. Instead of
remembering the sequence number, a host chooses a cryptographically generated
sequence number, puts it on the outgoing segment, and forgets it. If the three-way
handshake completes, this sequence number (+ 1) will be returned to the host. It can
then regenerate the correct sequence number by running the same cryptographic
function, as long as the inputs to that function are known, for example, the other
host’s IP address and port, and a local secret.
• ISN = C(t) + hash(local_addr, local_port, remote_addr, remote_port, key) (Initial Sequence

Number)

– RFC1948

TCP Connection Release

• Each simplex connection is
released independently.

• Normally, four TCP segments are
needed to release a connection:
one FIN and one ACK for each
direction.

• To avoid the two-army problem
(discussed in Sec.6.2.3), timers
are used.

– If a response to a FIN is not
forthcoming with two maximum
packet lifetimes, the sender of the
FIN releases the connection. The
other side will eventually notice that
nobody seems to be listening to it
anymore and will time out as well.

The Two-army Problem

• Symmetric release treats the connection as two separate

unidirectional connections and requires each one to be

released separately.

• The two-army problem

TCP Connection Release

• Each simplex connection is
released independently.

• Normally, four TCP segments are
needed to release a connection:
one FIN and one ACK for each
direction.

• To avoid the two-army problem
(discussed in Sec.6.2.3), timers
are used.

– If a response to a FIN is not
forthcoming with two maximum
packet lifetimes, the sender of the
FIN releases the connection. The
other side will eventually notice that
nobody seems to be listening to it
anymore and will time out as well.

TCP Connection Release (I)

• Consider there is a well established TCP connection
between the client and server. Client wants to terminate the
connection

• The following steps are followed in terminating the
connection:

– Step 1: For terminating the connection

• Client sends a FIN segment to the server with FIN bit set to 1.

• Client enters the FIN_WAIT_1 state.

• Client waits for an acknowledgement from the server.

– Step 2: after receiving the FIN segment

• Server frees up its buffers (receiving buffer)

• Server sends an acknowledgement to the client.

• Server enters the CLOSE_WAIT state.

TCP Connection Release (II)

• The following steps are followed in terminating the connection:

– Step 3: After receiving the acknowledgement, client enters the

FIN_WAIT_2 state. Now,

• The connection from client to server is terminated i.e. one way connection is

closed.

• Client cannot send any data to the server since server has released its buffers.

• Pure acknowledgements can still be sent from client to server (no data).

• The connection from server to client is still open i.e. one way connection is still

open.

• Server can send both data and acknowledgements to the client.

– Step 4: Now suppose server wants to close the connection with the client.

For terminating the connection,

• Server sends a FIN segment to the client with FIN bit set to 1.

• Server waits for an acknowledgement from the client.

TCP Connection Release (III)

• The following steps are followed in terminating the

connection:

– Step 5: After receiving the FIN segment,

• Client frees up its buffers (receiving buffer).

• Client sends an acknowledgement to the server (not mandatory).

• Client enters the TIME_WAIT state.

• TIME_WAIT state

– The TIME_WAIT state allows the client to resend the final

acknowledgement if it gets lost.

– After the wait, the connection gets formally closed.

TCP Connection Management Modeling

Each line is marked by

an event/action pair

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

• TCP segment header

• TCP connection establish

• TCP sliding window

• TCP timer management

• TCP congestion control

• BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP Sliding Window

ACK = 2048指下
个期待的字节号
(It indicates the

sequence number

of the next data

byte that receiver

expects to receive

from the sender)

An connection for data transmission

example (I)

In the following table, relative

sequence numbers are used, which

is to say that sequence numbers

begin with 0 on each side. The SEQ

numbers on the A side correspond

to the ACK numbers on the B side;

they both count data flowing from

A to B.

An Ladder Example (II)
A sends B sends

1 SYN: SEQ = 0

2 SYN+ACK: SEQ = 0, ACK = 1 (expecting)

3 ACK: SEQ = 1，ACK = 1 (ACK of SYN)

4 “abc”: SEQ = 1, ACK = 1

5 ACK of “abc”: SEQ = 1, ACK = 4 (no data)

6 “dfeg”: SEQ = 4, ACK = 1

7 ACK of “dfeg”: SEQ = 1, ACK = 8 (no data)

8 “foobar”: SEQ = 8, ACK = 1

9 “hello”: SEQ = 1, ACK = 14

10 “goodbye”: SEQ = 14, ACK = 6

11 FIN: SEQ = 21, ACK = 6 ACK of “goodbye”: SEQ = 6, ACK = 21

12 ACK of FIN: SEQ = 6, ACK = 22

13 FIN: SEQ = 6, ACK = 22

14 ACK of FIN: SEQ = 22, ACK = 7

Another Example
• Suppose A and B create a TCP connection with ISNA = 20,000 and ISNB = 5,000. A sends

three 1000-byte packets (Data1, Data2, and Data 3 below), and B ACKs each. Then B sends a

1000-byte packet DataB to A and terminates the connection with a FIN. In the table below,

fill in the SEQ and ACK fields for each packet shown.

A sends B sends

1 SYN: ISNA = 20000

2 SYN+ACK: ISNB = 5000, ACK =

3 ACK: SEQ = , ACK =

4 Data1: SEQ = , ACK =

5 ACK: SEQ = , ACK = (no data)

6 Data2: SEQ = , ACK =

7 ACK: SEQ = , ACK = (no data)

8 Data3: SEQ = , ACK =

9 ACK: SEQ = , ACK = (no data)

10 DataB: SEQ = , ACK =

11 ACK: SEQ = , ACK =

12 FIN: SEQ = , ACK =

TCP Sliding Window

• TCP implements sliding windows, in order to improve
throughput.

• Window sizes are measured in terms of bytes rather
than packets;

• When the window is 0, the sender may not normally
send segments, with two exceptions.
– 1) Urgent data may be sent, for example, to allow the user to

kill the process running on the remote machine.

– 2) The sender may send a 1-byte segment to force the receiver
to re-announce the next byte expected and the window size.
This packet is called a window probe.
• The TCP standard explicitly provides this option to prevent deadlock

if a window update ever gets lost.

Nagle’s Algorithm

• To reduce the load placed on the network by the receiver

– Delayed acknowledgements is to delay acknowledgements and window
updates for up to 500 msec in the hope of acquiring some data on which
to hitch a free ride.

• To reduce the bandwidth used by a sender that sends multiple short
packets.

– Nagle’s algorithm (Nagle, 1984): when data come into the sender in
small pieces, just send the first piece and buffer all the rest until the first
piece is acknowledged. Then send all the buffered data in one TCP
segment and start buffering again until the next segment is
acknowledged. (burstness)

– Nagle’s algorithm is not suitable for interactive games. A subtle problem
is that Nagle’s algorithm can sometimes interact with delayed
acknowledgements to cause a temporary deadlock.

• The receiver waits for data on which to piggyback an acknowledgement, and
the sender waits on the acknowledgement to send more data.

Clark’s Solution

• Another problem that can degrade TCP performance is the silly

window syndrome (Clark 1982).

– The problem occurs when data are passed to the sending TCP entity in large

blocks, but an interactive application on the receiving side reads data only 1 byte

at a time.

– Clark’s solution is to force the receiver to wait until it has a decent amount of

space available and advertise that instead.

The Silly Window Syndrome

• Nagle’s algorithm and Clark’s solution to the silly window

syndrome are complementary.

– Nagle was trying to solve the problem caused by the sending

application delivering data to TCP a byte at time.

– Clark was trying to solve the problem of the receiving application

sucking the data up from TCP a byte at a time.

– Both solutions are valid and can work together. The goal is for the

sender not to send small segments and the receiver not to ask for

them.

TCP Sliding Window

• Another issue that the receiver must handle is that segments

may arrive out of order.

– The receiver will buffer the data until it can be passed up to the

application in order.

– Acknowledgements can be sent only when all the data up to byte

acknowledged have been received.

• This is called a cumulative acknowledgement.

• Example: If the receiver gets segments 0, 1, 2, 4, 5, 6, and 7, it can

acknowledge everything up to and including the last byte in segment

2. When the sender times out, it then retransmits segment 3. As the

receiver has buffered segments 4 through 7, upon receipt of segment

3 it can acknowledge all bytes up the end of segment 7.

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

• TCP segment header

• TCP connection establish

• TCP sliding window

• TCP timer management

• TCP congestion control

• BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP Timer Management

• TCP uses multiple timers (at least conceptually) to do its

work.

– The RTO (Retransmission TimeOut)

• How long should the RTO be ? This problem is much more difficult in the

transport layer than in data link protocols such as 802.11.

– The Persistence timer

– The Keepalive timer

– The one used in TIME WAIT state

TCP Timer Management: RTO
• The RTO (Retransmission TimeOut)

– How long should RTO be? This problem is much more difficult in

the transport layer than in data link protocols such as 802.11.

– In the data link layer, the expected delay is measured in

microseconds and is highly predictable (i.e., has a low variance)

TCP Timer Management: RTO

• TCP is faced with a radically different environment. The pdf

for the time it takes for a TCP acknowledgement to come

back is larger and more variable.

– If the timeout is set too short, say T1, in Fig.6-42(b), unnecessary

retransmissions will occur.

– If the timeout is set too long, say T2, in Fig.6-42(b), performance

will suffer due to the long retransmission delay whenever a packet

is lost.

– Furthermore, the mean and variance of the acknowledgement

arrival distribution can change rapidly within a few seconds as

congestion builds up or is resolved.

TCP Timer Management: RTO
• The solution is to use a dynamic algorithm that constantly adapts

the timeout interval, based on continuous measurements of
network performance.

• SRTT (Smoothed Round-Trip Time, Jacobson,1988)
– Exponentially Weighted Moving Average (EWMA, R is the current

estimate of the RTT)

• RTTVAR (Round-Trip Time VARiration)
– To make the timeout value sensitive to the variance in round-trip times as

well as the smoothed round-trip time.

• RFC 2988

SRTT = SRTT + (1) R where = 7/8.

RTTVAR = RTTVAR + (1) |SRTT R| where = 3/4.

RTO = SRTT + 4 RTTVAR

RTO = min(1sec, RTO)

TCP Timer Management: RTO

• One problem that occurs with gathering the samples, R, of

the round-trip time is what to do when a segment times out

and is sent again. When the acknowledgement comes in, it

is unclear whether the acknowledgement refers to the first

transmission or a later one.

• Karn’s algorithm: do not update estimates on any

segments that have been retransmitted. Additionally, the

timeout is doubled on each successive retransmission until

the segments get through the first time.

TCP Timer Management: the persistent

timer

• It is designed to prevent the following deadlock.

– The receiver sends an acknowledgement with a window size of 0,

telling the sender to wait. Later, the receiver updates the window,

but the packet with the update is lost. Now the sender and the

receiver are each waiting for the other to do something.

– When the persistence timer goes off, the sender transmits a probe

to the receiver. The response to the probe gives the window size.

• If it is still 0, the persistent timer is set again and the cycle repeats.

• If it is nonzero, data can now be sent.

TCP Timer Management: the keepalive

timer

• When a connection has been idle for a long time, the

keepalive timer may go off to cause one side to check

whether the other side is still there.

TCP Timer Management: the TIME

WAIT timer

• This timer is used in the TIME WAIT state while closing.

• It runs for twice the maximum packet lifetime to make

sure that when a connection is closed, all packets created by

it have died off.

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

• TCP segment header

• TCP connection establish

• TCP sliding window

• TCP timer management

• TCP congestion control

• BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP Congestion Control (I)

• The network layer detects congestion when queues grow

large at routers and tries to manage it, if only by dropping

packets.

• It is up to the transport layer to receive congestion

feedback from the network layer and slow down the rate of

traffic that it is sending into the network.

– In the Internet, TCP plays the main role in controlling congestion,

as well as the main role in reliable transport.

TCP Congestion Control (II)

• TCP congestion control is based on a AIMD (Additive

Increase Multiplicative Decrease) control law using a

window and with packet loss as the binary signal.

• TCP maintains a congestion window (the sending window)

and a flow control window (the receiving window)

– The congestion window (the sending window) whose size is the

number of bytes the sender may have in the network at any time.

• The Congestion window is known only to the sender and is not sent over the

links.

– The corresponding rate is the window size divided by the round-

trip time of the connection.

– TCP adjusts the size of the congestion window according to the

AIMD rule.

TCP Congestion Control (III)

• TCP congestion control is based on a AIMD (Additive
Increase Multiplicative Decrease) control law using a
window and with packet loss as the binary signal.

• TCP maintains a congestion window and a flow control
window

– The flow control window (or the receiver window size) which
specifies the number of bytes that the receiver can buffer. Receiver
dictates its window size to the sender through TCP Header.

– Both windows are tracked in parallel, and the number of bytes that
may be sent is the smaller of the two windows. In other words, the
amount of unacknowledged data at a sender min (Receiver
Window Size, Congestion Window Size)

– TCP will stop sending data if either the congestion or the flow
control window is temporarily full.

The TCP Segment Header

TCP Congestion Control (IV)

• TCP congestion control is based on a AIMD (Additive

Increase Multiplicative Decrease) control law using a

window and with packet loss as the binary signal.

• All the Internet TCP algorithms assume that lost packets

are caused by congestion and monitor timeouts.

• But, using packet loss as a congestion signal depends on

transmission errors being relatively rare.

– This is not normally the case for wireless links such as 802.11

• Retransmission mechanism at the link layer

– Most wires and optical fibers have lower bit-error rates.

TCP Congestion Control (V)

• During the implementation, we have two important

questions:

– 1) The transmission rate of packets which the sender will use

• Ack clock ~ to estimate RTT

– 2) The size of the congestion window so that we can take the most

advantage of the network path while at the same time will not

induce clog quickly

• Slow start

TCP Congestion Control (VI)
• The key observation is that the acknowledgements return to the

sender at about the rate that packets can be sent over the slowest

link in the path. This is precisely the rate that the sender wants to

use.

– The acknowledgements reflect the times at which the packets arrived at

the receiver after crossing the slow link.

• This timing is known as an ack clock. It is an essential part of TCP.

– By using an ack clock, TCP smooths out traffic and avoids unnecessary

queues at routers.

TCP Start Problem

• We want to quickly near the right rate, cwndIDEAL, but it

varies greatly because TCP needs to work across a very

large range of data rates and RTTs.

– Fixed sliding window doesn’t adapt and is rough on the network

layer (packet loss!)

– AI (Additive Increase) with small bursts adapts cwnd gently to the

network, but might take a long time to become efficient.

Slow-Start Solution (I)
• Start by doubling cwnd (the congestion window) every RTT

– Exponential growth (1, 2, 4, 8, 16,)

– Start slow quickly reach large values.

The Optimal size

of the congestion

window

Slow-Start (Doubling) Timeline

Increment cwnd by 1

packet for each ACK.

每收到一个ACK，就增加一个数据包，也就是一个变两个。

Slow-Start Solution (II)

• Because slow start causes exponential growth, eventually it will
send too many packets into the network too quickly.

• To keep slow start under control, the sender keeps a threshold for
the connection called the slow start threshold.

– Initially the slow start threshold is set arbitrarily high, to the size of
the flow control window, so that it will not limit the connection.

– TCP keeps increasing the congestion window in slow start until

• 1) a timeout occurs (~packet loss): the slow start threshold is set to
be half of the congestion window and the entire process is restarted.

• 2) the congestion window exceeds the slow start threshold: TCP
switches from slow start to additive increase.

– In this mode, the congestion window is increased by one segment every
round-trip time.

Additive Increase Timeline

Increment cwnd

by 1 packet every

cwnd ACKs (or 1

RTT)

从上图看完成一个完整的RTT，才增加一个数据包。如cwnd = 3时，只有收到三个ACKs，才
增加一个数据包。

Slow-Start Solution (III)
• A mix of linear and the multiplication increase (Van Jacobson, 1988)

• The whole idea is for a TCP connection to spend a lot of time with its congestion

window close to the optimum value not so small that throughput will be low,

and not so large that congestion will occur.

Inferring Loss from ACKs

• TCP uses a cumulative ACK
– Carries highest in-order sequence number

– Normally a steady advance

• Duplicate ACKnowledgements gives us hints about what data
hasn’t arrived
– Tell us some new data did arrive, but it was not next expected segment.

– Thus the next expected segment may be lost.

– Arbitrarily treat three duplicate acknowledgements as a loss

– Retransmit next expected segment before the retransmission timeout
(Fast Retransmission)

– The slow start threshold is still set of be half of the current congestion
window. Slow start can be restarted by setting the congestion window to
one packet.

Sender Receiver

ACK12

ACK13

ACK13

ACK13

ACK13

ACK13

ACK13

ACK20

...

Exit Fast

Recovery

Data20

More ACKs advance

window; may send

segments before

ACKs jump

Data13

Retransmission

fills in the hole

at 13

Data 13 was

lost earlier, but

got 14 to 20

Data21

Data22

3rd duplicate ACK, so
send 13

Set ssthresh cwnd =
cwnd/2

Fast Retransmission (I)
• Treat three duplicate Acknowledgments as a loss

– Retransmit next expected segment

– Some repetition allows for reordering, but still detects loss quickly.

Fast Retransmission (II)

• It can repair single segment loss quickly, typically before a

timeout

• However, we have quiet time at the sender/receiver while

waiting for the ACK to jump

• The slow start threshold is still set of be half of the current

congestion window. Slow start can be restarted by setting

the congestion window to one packet.

TCP Congestion Control: Tahoe (1988)

• The maximum segment size is 1KB.

• Initially, the congestion window was 64 KB.

• A timeout occurred, so the slow-start threshold is set to be half of the

congestion window, 32 KB, and the congestion window to 1KB for

transmission 0.

• The congestion window grows exponentially until it hits the slow-start

threshold (32KB). Now the window grows linearly. It is increased by one

segment every RTT.

TCP Congestion Control: Tahoe (1988)

• The transmission in round 13, one of packets is lost in the network.

This is detected when three duplicate acknowledgements arrive. At

that time, the lost packet is retransmitted, the slow-start threshold is

set to half of the current congestion window (40/2 = 20 KB), and slow

start is initiated all over again.

Inferring Non-loss from ACKs

• At the time of the fast retransmission, duplicate

Acknowledgements also give us hints about what data has

arrived.

– Every time another duplicate acknowledgement arrives, it is likely

that another packet has left the network.

– It will be the segments after the loss.

– Thus advancing the sliding window will not increase the number

of segments stored in the network

Fast Recovery

• Fast recovery is the heuristic that implements this behavior.

– Continue to send a new packet for each additional duplicate

acknowledgement (pretend further duplicate ACKs are the

expected ACKs)

– To do this, duplicate ACKs are counted (including the three that

triggered fast retransmission) until the number of packets in the

network has fallen to the new threshold.

– Reconcile views when the ACK jumps

TCP Reno版本中Fast Recovery

左边直线为发送端sender的

时间轴，右边直线为接收端
receiver的时间轴，时间轴是
往下走的。
拥塞控制窗口cwnd初始大小
这里假设为10。

发送端收到了三个
“Duplicated
ACKs”(dupACK[9])，表明
Data[10]可能在传输过程中

因某种原因丢失了。按照
Reno TCP版马上做出决定：
将slow-start threshold降到

当前拥塞窗口的一半（注意
拥塞控制窗口cwnd=10），
即slow-start threshold为5，
并重新发送Data[10]。

TCP Reno版本中Fast Recovery

注意这里图中ACK[9]，和书本
上描述ACK有点出入，书本上
ACK是表明期待下一个数据包
的序号，而这张图中ACK[9]就
是表示Data[9]已经收到，期
待的是Data[10]

请大家注意这里三个
“Duplicated ACKs”其实也
表明Data[11]，Data[12]和
Data[13]已经抵达，不然不

会触发接收端发送三个
“Duplicated ACKs”。

TCP Reno版本中Fast Recovery

注意这里图中ACK[9]，和书本
上描述ACK有点出入，书本上
ACK是表明期待下一个数据包
的序号，而这张图中ACK[9]就
是表示Data[9]已经收到，期
待的是Data[10]

在这个时间点，仍在网络中
传输的数据包有： Data[14],
Data[15], Data[16], Data[17],
Data[18]和Data[19]，以及重
传的Data[10]，所以图中标
识EFS (Estimated Flight Size)
= 7。所以发送端暂停发送

任何数据，因为已经超出了
slow-start threshold (5)。

TCP Reno版本中Fast Recovery

注意这里图中ACK[9]，和书本
上描述ACK有点出入，书本上
ACK是表明期待下一个数据包
的序号，而这张图中ACK[9]就
是表示Data[9]已经收到，期
待的是Data[10]

再等收到三个“Duplicated
ACKs”后，隐含着Data[14],
Data[15]和Data[16]已经安全
抵达。现在EFS (Estimated
Flight Size) 等于多少呢？是
不是等于4，就是Data[17],
Data[18]和Data[19]，外加前
面重新发送Data[10]，总共
为4个数据包。而slow-start
threshold为5，所以可以发
一个数据包Data[20]。

TCP Reno版本中Fast Recovery

注意这里图中ACK[9]，和书本
上描述ACK有点出入，书本上
ACK是表明期待下一个数据包
的序号，而这张图中ACK[9]就
是表示Data[9]已经收到，期
待的是Data[10]

此后每收到一个
“Duplicated ACK”，就发

送一个新数据包，直至
Data[10]抵达，ACK跳跃到
正常的情况。不要忘记TCP
ACK是cumulative ACK。

TCP Congestion Control: Reno

• TCP Reno (1990):

– Fast recovery: to maintain the ack clock running with a congestion
window that is the new threshold, or half the value of the
congestion window at the time of the fast retransmission.

– To do this, duplicate acknowledgements are counted until the
number of packets in the network has fallen to the new threshold.
From then on, a new packet can be sent for each duplicate
acknowledgement that is received. One RTT after the fast re-
transmission, the lost packet will have been acknowledged. At that
time, the stream of duplicate acknowledgements will cease and
fast recovery mode will be exited. The congestion window will be
set to the new slow start threshold and grows by linear increase.

– TCP avoids slow start, except when the connection is first started
and when a timeout occurs.

TCP Congestion Control

• TCP Reno with its mechanisms for adjusting the congestion control

has formed the basis for TCP congestion control for more than two

decades. (TCP Tahoe + fast recovery)

MD of ½ no slow-start

TCP Congestion Control

• Two larger changes have also affect TCP implementations

– 1) SACK (Selective ACKnowledgements) lists up to three ranges of

bytes that have been received. With this information, the sender can more

directly decide which packets to retransmit and track the packets in flight

to implement the congestion window.

– With SACK, TCP can recover more easily from situations in which

multiple packets are lost at roughly the same time, since the TCP sender

knows which packets have not been received.

– [RFC2883 and RFC3517]

TCP Congestion Control
• ECN (Explicit Congestion Notification)

– ECN is an IP layer mechanism to notify hosts of congestion.

– The use of ECN is enabled for a TCP connection when both the sender

and receiver indicate that they are capable of using ECN by setting the

ECE and CWR bits during the connection establishment.

• The TCP receiver uses the ECE (ECN-Echo) flag to signal the TCP sender to

tell it to slow down when the TCP receiver gets a congestion indication from the

network.

• The sender tells the receiver that it has heard the signal by using the CWR

(Congestion Window Reduced) flag, so that the TCP receiver knows the sender

has slowed down and can stop sending the ECN-Echo.

– If ECN is used, routers that support ECN will set a congestion signal on

packets that can carry ECN flags when congestion is approaching,

instead of dropping those packets after congestion has occurred.

– ECN requires both host and router support. [RFC 3168]

The TCP Segment Header

TCP Reno, NewReno, and SACK

• Reno can repair one loss per RTT

– Multiple losses cause a timeout

• NewReno further refines ACK heuristics

– Repairs multiple losses without timeout

– SACK (Selective Acknowledgement) is a better idea

• Receiver sends ACK ranges so sender can retransmit without

guess

Feedback Signals for Congestion Control

• Several possible signals, with different pros/cons

Signal Example Protocol Pros/Cons

Packet loss TCP NewReno Hard to get wrong/ Hear

about congestion late

Packet delay Compound TCP (Window) Hear about congestion early/

need to infer congestion

Router indication TCP with ECN (Explicit

Congestion Notification)

Hear about congestion early/

require router support

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

Outline

• Overview of the transport layer

• The internet transport protocols

– UDP

– TCP

• TCP segment header

• TCP connection establish

• TCP sliding window

• TCP timer management

• TCP congestion control

• BBR (Bottleneck Bandwidth and Round-trip propagation time)

BBR Congestion-based Congestion

Control

Slow Start [1]

Slow Start

• As each ack arrives, two packets are generated.

– opens the window exponentially in time.

• The slow-start window increase isn’t that slow: it

takes time Rlog2W where R is the round-trip-time

and W is the window size in packets.

BBR [3]

• TCP congestion control was created in the 1980s interpreting
packet loss as “congestion”. This equivalence was true at the time but
was because of technology limitations, not first principles.

– As NIC evolved from Mbps to Gbps and memory chips
from KB to GB, the relationship between packet loss and
congestion became more tenuous.
– When bottleneck buffers are large, loss-based congestion control keeps them full,

causing buffer bloat.

• Delaying congestion events for senders (when network devices in along a network
path have buffers that are too large, a TCP sender with a large congestion window
can send at a rate that far exceeds the capacity of the network before it ever receives
a loss signal.)

– When bottleneck buffers are small, loss-based congestion control misinterprets
loss as a signal of congestion, leading to low throughput.

BBR [3]

• Fixing these problems requires an alternative to loss-based congestion
control. First we have to understand where and how network
congestion originates.

– Congestion and bottleneck

– At any time, a full-duplex TCP connection has exactly one slowest link
or bottleneck in each direction. The bottleneck is important because

– It determines the connection’s maximum data-delivery rate.

– It is where persistent queues form.

• From TCP’s viewpoint, an arbitrary complex path behaves as a single
link with the same RTT and bottleneck rate.

– Two physical constraints, RTprop (round-trip propagation time) and BtlBw
(Bottleneck Bandwidth), bounds transport performance.

• If the network path were a physical pipe, RTprop would be its length
and BtlBW its minimum diameter.

BBR [3]

• Fig.1 shows RTT and delivery rate
variation with the amount of data
in flight (data sent but not yet
acknowledged).

• Blue lines show the RTprop
constraint, green lines the BtlBw
constraint, and red lines the
bottleneck buffer.

– When there isn’t enough data in
flight to fill the pipe, RTprop
determines behavior; otherwise,
BtlBw dominates.

• Transitions between constraints
result in three different regions
{app-limited, bandwidth-limited,
and buffer-limited}

BBR [3]

Bandwidth-delay product (BDP) is

a measurement of how many bits can

fill up a network link. It gives the

maximum amount of data that can be

transmitted by the sender at a given

time before waiting for

acknowledgment. Thus it is the

maximum amount of unacknowledged

data.

data in flight (data sent but not yet

acknowledged) = BtlBw RTprop.

The pipe is full pass this point (BDP).

BBR [3]

Data in flight (data sent but not yet

acknowledged). ~

Little’s Result (in steady state)

which relates the average number in the

system to the average arrival rate and

the average time spent in that system T,

namely

is the data in flight in the network.

T (~ RTT) is proportional to the amount

of packets in flight , the lower bound

is RTprop (min RTT).

 (~ the delivery rate) is inversely

proportional to the RTT and

proportional to the amount of packets

in flight , the upper bound is BltBw

(max or the delivery rate).

N T

N

N

N

N

BBR [3]

The inflight BDP excess creates a

queue at the bottleneck, which results in

the linear dependence of RTT on inflight

data (Little’s Law).

Packets are dropped when the excess

exceeds the buffer capacity.

Loss-based congestion control operates

at the right edge of the bandwidth-limited

region, delivering full bottleneck

bandwidth at the cost of high delay and

frequent packet loss.

BBR operates at the left edge of

bandwidth-limited region, maximizing

delivered bandwidth while minimizing

delay and lossN N

T RTprop

N N
T RTT

BtlBw

BBR [3]

• “app-limited” (application limited) region The
application runs out of data to fill the network.

• When there isn’t enough data in flight to fill the pipe,
RTprop determines behavior; otherwise BtlBw dominants.

• Rtprop and BtlBw obey an uncertainty principle (the
Network’s Heisenberg Uncertainty Principle): whenever one
can measured, the other cannot.

– The pipe has to be overfilled to find its capacity, which creates a
queue that obscures the length of the pipe. (BtlBw but not RTprop)

– An application running a request/response protocol might never
send enough data to fill the pipe and observe BtlBW (RTprop but
not BtlBw)

BBR [3]

• Characterizing the bottleneck

– Rate balance: a connection runs with the highest throughput and lowest
delay when the bottleneck packet arrival rate equals BtlBw.

• This condition guarantees that the bottleneck can run at 100% utilization.

– Full pipe: the total data in flight is equal to the BDP = BtlBw RTprop.

• This condition guarantees there is enough data to prevent bottleneck starvation
but not over fill the pipe.

– BtlBw and RTprop vary over the life of a connection, so they must be
continuously estimated.

– BtlBw and RTprop are completely independent

• RTprop can change (for example, on a route change) but still have the
same bottleneck, or BtlBw can change (for example, when a wireless
link changes rate) without the path changing.

BBR [3]

• How to estimate RTprop?

– TCP currently tracks RTT (the time interval from sending a data
packet until it is acknowledged) since it is required for loss
detection.

– At any time t, , where 0 represents the
“noise” introduced by queues along the path, the receiver’s delay
ack strategy, ack aggregation, etc.

• RTprop is a physical property of the connection’s path and changes only
when the path changes (物理链路能达到的最小时延，而RTT是实测值).

– An unbiased, efficient estimator at time T is

• a running min over time window WR which is typically tens of seconds to
minutes.

t t tRTT RTprop

 m ,minin t t RRTprop RTprop RTT t T W T

BBR [3]

• How to estimate BtlBw?
– Unlike RTT, nothing in the TCP requires implementations to track

bottleneck bandwidth, but a good estimate results from tracking delivery
rate.

– Average delivery rate between send and ack is the ratio of data delivery
to time elapsed: deliveryRate = delivered / t.

– This rate must be the bottleneck rate, the arrival amount is known
exactly so all the uncertainty is in the t, which must be the true arrival
interval; thus, the ratio must be the true delivery rate, which is, in turn,
upper-bounded by the bottleneck capacity). (BtlBw是物理链路能达到
的最大速率，传输速率是实测值。)

– A windowed-max of delivery rate is an efficient, unbiased estimator of
BltBw:

• where the time window WR is typically six to ten RTTs.

 max ,t BBltBW deliveryRate t T W T

BBR [3]

• The core BBR algorithm has two parts:

– 1. When an ack is received The if checks address the

uncertainty issue:

1) BtlBw is a hard upper

bound on the delivery

rate so a measured

delivery rate larger

than the current BltBw

estimate must mean

the estimate is too low.

2) The code here decides

which samples to

include in the

bandwidth model so it

reflects network, not

application limits.

BBR [3]

• The core BBR algorithm
has two parts:

– 2. When data is sent: to
match the packet-arrival
rate to the bottleneck link’s
departure rate, BBR paces
every data packet.

• pacing_rate: BBR’s
primary control parameter,
to lower the burstiness.

• cwnd_gain: bounds inflight
to a small multiple of the
BDP to handle common
network and receiver
pathologies.

BBR [3]

• Rather than using events such as loss or buffer occupancy,

which are only weakly correlated with congestion, BBR

starts from Kleinrock’s formal model of congestion and its

associated optimal operating point.

• The rate and amount BBR sends is solely a function of the

estimated BtlBw and RTprop.

– BtlBw and RTprop can be estimated sequentially

• BBR runs purely on the sender and does not require changes

to the protocol, receiver, or network, making it

incrementally deployable.

References

• [1] Jacobson, V. Congestion avoidance and control. ACM SIGCOMM

Computer Communication Review, 18(4): 314-329, 1988.

• [2] Ha, S., Rhee I., and Xu L. CUBIC: a new TCP-friendly high-speed

TCP variant. ACM SIGOPS, 2008.

• [3] Cardwell N., Cheng Y., Gunn C.S., Yeganeh S.H., and Jacobson,V.

BBR congestion-based congestion control, ACM Queue, 2016.

TCP vs. UDP (I)
• Both use port numbers

– Application-specific construct serving as a communication endpoint

– 16-bit unsigned integer, thus ranging from 0 to 65535

– To provide end-to-end transport

• UDP: User Datagram Protocol

– connectionless

– No acknowledgements

– No retransmissions

– Out of order, duplicates possible

• TCP: Transmission Control Protocol

– Connection-oriented

– Reliable byte-stream channel (in order, all arrive, no duplicates)

– Flow control

– bidirectional

TCP vs. UDP (II)

• TCP is used for services with a large data capacity, and a

persistent connection

• UDP is more commonly used for quick lookups, and single

use query-replay actions.

• Some common examples of TCP and UDP with their default

ports:

References

• [1] A.S. Tanenbaum, and D.J. Wetherall, Computer Networks, 5th

Edition, Prentice Hall, 2011.

• [2] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-

speed TCP variant,” ACM SIGOPS Operating Systems Review,

42(5): 64-74, 2008. (截至2021年11月18日引用2439次)

• [3] N. Cardwell, Y. Cheng, C.S. Gunn, S. H. Yeganeh, and V.

Jacobson, “BBR Congestion-based congestion control – Measuring

bottleneck bandwidth and round-trip propagation time,” ACM

QUEUE, vol.15, no.5, pp.20-53, 2016. (截至2021年11月18日引用
588次)

